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Electronic energy spectrum of two-dimensional solids
and a chain of C atoms from a quantum network model
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The aim of this study is to explain how a quantum network can be used as sim-
ple model to calculate complex band structures. The paper contains an introduction,
a mathematical exposure of the method, and applications to graphene, boron nitride,
and polyacetylene chains. Using a quantum network is a simple, intuitive, and, yet,
rather accurate way to obtain a band structure for a complex material. One focus here
is to invoke physical and chemical intuition to construct the effective one-body poten-
tial along the wires of a quantum network.
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1. Background

The quantum network model [1–4] reduces the multicentre problems posed
by periodic solids such as graphite and boron nitride, to be treated in some detail
below, to what is essentially an application of Kirchoff’s laws in an electrical cir-
cuit. By way of illustration let us start with three-dimensional graphite depicted
as to its crystal structure in figure 1. It consists of rather weakly interacting hex-
agonal planes of C atoms. The weak coupling between planes is clear from the
fact that while the nearest C–C spacing in one plane (known as graphene) is
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Figure 1. Crystal structure of graphite.

1.43 Å, the interlayer separation is 3.5 Å. Thus, it is already a valuable approxi-
mation to the electronic structure of three-dimensional graphite to treat a single
layer, namely graphene. This is shown in figure 2(a), where “wires” connect each
C atom to its nearest-neighbours. One can view figure 2(a), very helpfully, as an
electrical circuit in which currents flow in a manner governed by Kirchoff’s laws.
Free electrons on zig–zag wires and various ring structures have been used by a
number of authors [1,2,5–7].

In the simplest version of such a model, worked out by Coulson [2], cur-
rent conservation constituted a “boundary condition” at every junction, whereas
he assumed that in their motion along the wires of the “graphene” network the
valence (π ) electrons were free: i.e. electrons moved in zero potential energy V =
0. One impressive, and indisputable, finding of Coulson was that the π -electron
energy bands of graphene touched at the Fermi energy Ef , with zero density of
states there, i.e. N(Ef ) = 0 (see figure 6 below, with however a potential V �= 0
along the wires). Thus, a single graphene layer, in solid-state parlance, was cor-
rectly predicted by the Kirchoff network laws as having semimetallic character.

In the present study, we take advantage of progress in the quantum network
model (QNM) especially notable work being that of Montroll [4], to give a math-
ematically rather complete version of the theory as applied to periodic systems
like graphite and boron nitride crystals.

The outline of the paper is then as follows. In Section 2 the QNM is applied
to a graphene layer, which has been set out in a ‘self-contained” form. Section 3
generalises the C layer treatment of the previous section to deal with a BN layer
(figure 2(b)) having the same hexagonal structure, and again the presentation of
this example is complete in itself. The polyacetylene infinite chain with alter-
nating single and double bonds (figure 2(d)) is the subject of Section 4. These
examples then prompt a more formal section, getting out fully the mathematics
underlying the QNM. A summary, with some suggestions for possible future
studies, constitutes the final Section 6.



C. Amovilli et al. / Electronic energy spectrun of two-dimensional solids 95

Figure 2. Structures of systems considered in this work. (a) Portion of infinite graphene layer. (b)
Similar to (a) but for boron nitride. (c) Butadiene molecule, which is used to fix potential energy

along wires in the QNM of carbon compounds. (d) trans-Polyacetylene.

2. Application of QNM to a single hexagonal plane of C atoms: Graphene
valence electrons

We shall first set out a treatment of the graphene layer of figure 2(a), as a
Kirchoff electrical network, but transcending previous treatments by construct-
ing of an effective one-body potential in which electrons move on the wires.

Along the lines joining the near-neighbour C atoms, the wave functions
satisfy one-dimensional Schrödinger equations, which are formally set out in
Section 5. Knowing the wave functions along the wires by solution of these
Schrödinger equations, one parallels the Kirchoff electrical network by impos-
ing that at every junction of the two-dimensional graphene layer, probability flow
(corresponding to electrical current) must be conserved. Additionally, however,
in a periodic lattice, in this example two-dimensional, Bloch’s theorem must be
satisfied: i.e. the wave function on one wire is a product of a free-particle term
times a periodic function with the period of the lattice. We note next, again mak-
ing contact with Kirchoff’s law, that current �j corresponding to such a complex
Bloch wave function φ is given by

�j = i
(
φ∗ �∇φ − φ �∇φ∗

)
. (1)
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Proceeding to solve the Schrödinger equation between junctions, one can
write a solution

φlm(x) = Flm(x)φlm(0)+Glm(x)φ
′
lm(0), (2)

which represents the general solution of a second-order Schrödinger differential
equation along the wire joining the junctions l and m in terms of Flm(x) and
Glm(x), namely the solutions with initial conditions Flm(0) = 1, F ′

lm(0) = 0 and
Glm(0) = 0, G′

lm(0) = 1.
Following Kirchoff’s law (see Section 5 for full details) we are led to the

QNM equations at the nodes of a graphene lattice unit cell.
The unit cell in graphene contains two carbon atoms, labelled a and b in

figure 3, and the lattice is generated by two vectors �u1 and �u2. The QNM equa-
tions at the nodes of a unit cell become

3FCC�a =
∑
b′(a)

�b′,

(3)
3FCC�b =

∑
a′(b)

�a′,

where the sums are restricted to the nearest-neighbours and the �a and �b are
related to φlm in equation (2) by

�a = φab(xa), �b = φab(xb), (4)

while FCC = FCC(dCC), dCC being the C–C bond length.

Figure 3. Unit cell of a graphene layer. Also shown are lattice vectors �u1 and �u2.
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Bloch’s theorem applied to the two different C atom subsets leads to

3FCC�a =
(

1 + ei�k·�u1 + ei�k·�u2

)
�b,

(5)
3FCC�b =

(
1 + e−i�k·�u1 + e−i�k·�u2

)
�a .

2.1. Choice of wire potential VCC along a near-neighbour bond in graphene

In energy band theory one is interested in the energy E as a function of
the wave vector k, which in a graphene layer in the (x, y) plane has components
k = (kx, ky). This so-called dispersion relation E(k) can be calculated numeri-
cally from the relation

9F 2
CC =

(
1 + ei�k·�u1 + ei�k·�u2

) (
1 + e−i�k·�u1 + e−i�k·�u2

)
(6)

obtained by multiplying together the two equations (6). We remark that FCC is
the value at one node of a function satisfying a one-dimensional Schrödinger
equation for a given eigenvalue E and for given boundary conditions.

The simplest QNM puts the potential V (x) in the Schrödinger equation
equal to zero: leading to the so-called free electron network model. Energy wave
number relations, with this assumption, can only reflect the geometry of the
graphene layer. It is significant, for more qualitative energy-band structure, to
construct a somewhat realistic potential V (x). A simple analytic form of V (x)
can appeal to the chemistry of a small molecule. We remark that the wave func-
tion φ of equation (2) is the analogue of a molecular orbital defined over a
graph, the electrical network, instead of the whole space. In the present model
φ is calculated by direct integration of Schrödinger equation instead of resort-
ing to the most widely used approach known as linear combination of atomic
orbitals (LCAO) approximation (see, for example [8]).

The potential VCC we have used to treat this example and later also the
polyacetylene is modelled in the following way:

VCC(λ) = −0.85 + dCC

1.34
sin2

(
πλ

dCC

)
, (7)

where energies are in units of Eh = e2/a0 and lengths in Å. dCC is the distance
between neighbour C atoms, which for graphene is 1.43 Å. The potential VCC

varies around the value –0.85 because of the sin2 term in equation (7) and the
highest value of VCC leads to energy barrier the height of which has been taken
proportional to the C–C bond length and fixed at 1 Eh for an isolated double
bond as results from figure 12 (see also Section 5). The value –0.85Eh at the
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nodes has been found instead by imposing that FCC = 1 at the energy of the
highest occupied molecular orbital of ethylene (�1 = �2 for symmetry reasons
in this particular molecule).

2.2. Calculation of energy wave number relations for graphene layer

The dispersion relation E(k) has been evaluated for a particular path in the
wave vector space, usually referred as K ≡ (2π/3, 2π/3

√
3) → �≡ (0, 0) → M ≡

(2π/3, 0) → K. The position of the symmetry points �, M and K on the Brill-
ouin zone is shown in figure 4. Figure 5 finally shows the computed E(k). These
E(k) curves transcend those of Coulson [2] as in figure 2(a) the electrons were
moving in a potential energy V along each wire in the Kirchoff electrical network.

From the dispersion relation E(k) the density of electronic energy states
N(E), defined such that N(E)dE is the number of electronic energy levels lying
in the range E to E + dE, has been calculated and is shown in figure 6. The
valence (π ) bands are seen to touch at the Fermi level, this being determined
by the fact that the lowest sub-band is completely filled when one has 1 π -elec-
tron per C atom as in the graphene layer under consideration. The fact that
with V = 0, as in Coulson’s original study [2], and with non-zero potential V
along the wires as in the present results depicted in figure 6, the same “touch-
ing” of the π -bands at the Fermi level is found indicates clearly that this cru-
cial property of the electronic band structure of a graphene layer is “potential
insensitive”, and determined essentially by topological considerations. Of course,
this is not generally true for E(k) in figure 5 and N(E) in figure 6: different
potential energy forms along the wires of the Kirchoff network lead to quanti-
tatively different dispersion relations and densities of states.

Figure 4. Brillouin zone for graphene layer showing the symmetry points �, M and K.
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Figure 5. Dispersion relation E(k) for π sub-bands of infinite graphene layer. Symmetry points
labelled in figure 4 are marked on this present figure.

3. Introduction of electronegativity: the electronic energy gap between the
π-sub-bands of a single hexagonal layer of boron nitride

Chemists use the concept of electronegativity to incorporate an ionic con-
tribution to binding in molecules and solids. In probably its simplest form, the
electronegativity of a neutral atom can be approximated by Mulliken’s formula
(I +A)/2, where I is the ionization potential and A the electron affinity. In pass-
ing from graphene to a BN single hexagonal layer, it is easy to verify that from
the above formula there is a substantial electronegativity difference between B
and N.

To incorporate this, it is now quite essential to invoke potentials which vary
spatially along the wires of the appropriate Kirchoff network and, in contrast
to graphene, the potential energy along a B–N wire has a difference in value at
the B and N nodes. We shall see that, because of the electronegativity difference
between B and N atoms, the π -bands, which touched at the Fermi level in graph-
ene, are now pushed apart by a very substantial energy of some eV.

As for graphene, the planar lattice of boron nitride is characterised by a
unit cell with B and N atoms replacing the Ca and Cb atoms with the same
translational vectors �u1 and �u2. Thus, the system of QNM equations for this
case is
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Figure 6. Density of π -electron states, N(E) in the π sub-bands of an infinite graphene layer.
Spikes shown occur at energies for which the group velocity dE/d�k becomes zero. They represent

the so-called Van Hove singularities [26].

3FBN�B =
(

1 + ei�k·�u1 + ei�k·�u2

)
�N,

(8)
3FNB�N =

(
1 + e−i�k·�u1 + e−i�k·�u2

)
�B,

where now FBN �= FNB due to the asymmetry of the potential VBN along the
wires connecting B and N atoms. The one-dimensional potential energy VBN

used to solve the Schrödinger equation along wires has been modelled in a par-
allel fashion to that already set out for the graphene layer:

VBN(λBN) = −0.5 − 0.5
λBN

dBN
+ 0.75 sin2

(
πλBN

dBN

)
, (9)

in which, again, the energy is in Eh. dBN,the distance between neighbouring
B and N atoms was set to 1.43 Å as for graphene. In equation (9), the vari-
able λBN is 0 at B junctions and dBN at N junctions. With the above model
function the potential energy difference between B and N junctions is thus
0.5Eh (13.6 eV). The potential energy is lower at the most electronegative atom,
namely nitrogen. The numerical parameters in equation (9) have been deter-
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mined by means of LCAO molecular orbital calculations performed on the
borazole molecule, the property of which already reflect electronegativity differ-
ence between B and N. A plot of the potential VBN along the BN wire is
shown in figure 7 where it is compared also with the potential VCC of equation
(7).

Multiplying together the two equations (9), we have

9FBNFNB =
(

1 + ei�k·�u1 + ei�k·�u2

) (
1 + e−i�k·�u1 + e−i�k·�u2

)
, (10)

which can be solved numerically to get E(k). Figures 8 and 9 show the resulting
energies of π -bands, along the K�MK path in reciprocal space, and the related
density of states. Here, there is a gap between the two π -sub-bands of about
6.8 eV. In boron nitride the experimental value for the gap is 5.5 eV.

Figure 7. QNM effective potential for the B–N wires (solid line) and C–C wires (dashed line) used
in this work to study the π -bands of graphene, boron nitride planar lattice and polyacetylene. The
energies are in atomic units and λ/d varies between 0 and 1. d is the distance between the linked

nodes.
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Figure 8. Similar to figure 5, but now for a single BN infinite layer. The large band gap opened
between the π -electron sub-bands is a consequence of the electronegativity difference between B and

N atoms.

4. Bond alternation and energy gap in polyacetylene

Polyacetylene represents an organic chain, and is known to exhibit bond
length alternation, as shown in figure 2(d). Obviously without bond alternation
there would be a free-electron one-dimensional spectrum and no energy gap.

The purpose of including this, apparently simpler, example at this stage is
to exhibit directly the connection between the extent of bond alternation and the
magnitude of the energy gap. Again the focus is on the π -electrons; one per C
atom.

For a unit cell of trans-polyacetylene, the analogue of the QNM equations
given for graphene in equation (4) is written below:(

F

G
+ f

g

)
�j = 1

G
�j+1 + 1

g
�j−1,

(11)(
F

G
+ f

g

)
�j+1 = 1

G
�j + 1

g
�j+2 .

Here bond length alternation in the chain is reflected in the appearance of the
two pair of functions (F,G) and (f, g), where in full (F,G) = (Fl,Gl) and
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Figure 9. Density of π -electron states in BN layer.

(f, g) = (fs, gs) where l and s refer to long and short C–C bonds, respectively
(see Section 5 for full details). Following this, the imposition of Bloch’s theorem
along the chain, gives

(
F

G
+ f

g

)
�j =

(
1
G

+ e−ika

g

)
�j+1,

(12)(
F

G
+ f

g

)
�j+1 =

(
1
G

+ eika

g

)
�j,

where a denotes the sum of the short and long C–C bond lengths. As before, we
form the product of equations (12) and (13) above to find

(
F

G
+ f

g

)2

=
(

1
G

+ e−ika

g

) (
1
G

+ eika

g

)
. (13)

This equation has the structure H(E, k) = 0, which, by solution yields the
one-dimensional dispersion relation of the π -electrons in the infinite polyacety-
lene chain.

The key information needed to plot numerically this E(k) relation is the
potential energy V (λ) along now both long and short bonds. We assume the
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transferability of the C–C potential used for graphene, and modelled by equa-
tion (7), provided along the two types of bond the appropriate bond length dCC

is inserted.
Figure 10 refers to the simplest case when there is no bond alternation

and dCC = 1.43 Å. Then there is no energy gap between the π sub-bands.
Figure 11 now introduces bond alternation, characterised by the well known
values 1.35 Å for the double bond and 1.53 Å for the single bond. The band
gap is then 1.6 eV whereas Greenham and Friend [9] quote 1.5 eV. This agree-
ment is remarkable and indeed better than could be expected from such a simple
model.

Having established a basic feature – a band gap – depending on bond alter-
nation, we will conclude this section by pointing out the potential of organic
conductors for device physics. In particular, attention will be focussed on why
polyacetylene has become a material of interest in this content. For the reader
interested in an extended discussion the article by Greenham and Friend [9]
may be consulted. The interest in polyacetylene can be traced back at least
to the report of high conductivity in charge transfer complexes formed with
this polymer [10]. The fact that these polymers had simple structures, plus

Figure 10. Dispersion relation E(k) in trans-polyacetylene without C–C bond alternation. Note
the touching of the sub-bands and as a consequence the zero energy gap.
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Figure 11. E(k) for the trans-polyacetylene with alternating single and double C–C bonds of
lengths 1.53 Å and 1.35 Å, respectively.

the fact that they could be used as electrical conductors, was immediately
attractive for device physics. Polyacetylene has proved to be the protypical
conjugated polymer. It can exist in various isomeric forms and the trans-
transoidal structure, usually termed simply trans-polyacetylene, known to be
the thermodynamically stable isomer at room temperature, is depicted in fig-
ure 2(d).

Interest in the π -electronic structure of polyacetylene dates back at least
to Lennard-Jones [11]. As the length of the conjugated chain is increased, the
energy gap between the occupied π orbitals and the empty π∗ orbitals reduces,
though in the long chain limit the gap remains finite at a value of about 1.5 eV.
The theoretical reasoning for this goes back at least to Longuet-Higgins and
Salem [12]. We close this brief summary by commenting that the behaviour of
the electrical conductivity with both acceptor and donor dopant is quite sugges-
tive of conventional substitutional p and n doping of a semiconductor. Doping
however is not now substitutional: the dopant species reside along the polymer
and there is charge-transfer reaction that parallels the intercalation chemistry
known for graphite (see [13]).
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5. Formalism of the quantum network model (QNM)

We define a Schrödinger equation on a graph, a collection of edges (wires,
links, lines, etc.) joined in vertices (nodes). Adopting the atomic units, on a link
between two nodes i and j we have

[
−1

2
∂2

∂λ2
+ vij (λ)

]
ϕij (λ) = εϕij (λ) (14)

for an electron moving on such a graph [1,3]. equation (14) is a linear second-
order homogeneous differential equation and has the general solution

ϕij (λ) = Fij (λ)ϕij (0)+Gij (λ)ϕ
′
ij (0), (15)

where Fij satisfies (14) with initial conditions Fij (0) = 1 and F ′
ij (0) = 0, and Gij

satisfies (14) with initial conditions Gij (0) = 0 and G′
ij (0) = 1. λ varies between

0 and lij , lij being the length of the link connecting the nodes (junctions) i and
j . The boundary conditions on ϕij (0) and ϕ′

ij (0) must be set according to the
requirement that the Hamiltonian operator defined over the graph is self adjoint.

For two solutions ηij and ϕij of equation (14), this condition implies

∑
ij links

[
η∗
ij

∂ϕij

∂λ
− ∂η∗

ij

∂λ
ϕij

]lij
0

= 0, (16)

which is guaranteed by the more general relation [14]

ci∑
j=1

Akjϕij (0)+
ci∑
j=1

Bkjϕ
′
ij (0) = 0, (17)

where ci is the coordination number of the node i and A and B are ci×ci matri-
ces chosen in such a way that AB† = BA†. Equation (17) in a more general sense
takes the meaning of a Kirchoff’s law at node i of the network. Thinking of real-
istic electron systems, from molecules to lattices, it is immediate to fix the conti-
nuity of the wave function at the vertices: this means

ϕi1(0) = ϕi2(0) = · · · = ϕici (0) = �i,

Akk = 1, Akk+1 = −1, Akj = 0, (j �= k, k + 1), (18)

Bkj = 0, 1 � k� ci − 1,

which leaves the following freedom
∑ci

j=1 ϕ
′
ij (0) = ζi�i,

Acij = ζi, Bcij = −1.
(19)
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Equation (19) have some resemblance with Kato’s cusp condition which for
example in the H atom ground state reads

(
∂ρ(r)

∂r

)
0

= − 2
a0
ρ(0), (20)

where ρ(r) is the electron density: being the square of the ground-state wave
function. Thus we expect that, if a vertex coincides with the position of a
nucleus, ζi could be �= 0 while is zero in other cases. For π -electron networks the
nodes are located outside nuclei, owing to the nodal structure of the one-electron
wave functions, the Ruedenberg and Scherr [1] condition is then validated by the
above consideration. A full discussion on the relation between

∑
j ϕ

′
ij (0) = 0 and

the principle of current conservation is given in the Ruedenberg and Scherr [1]
paper.

Instead, when nodes and wires are not coincident with atoms and bonds, A
and B, according to (17), could have, in principle, very different matrix elements
than in (18) and (19). Although, it has not yet been found in a realistic system
of this type, the role of the two matrices, A and B, seems important in thinking
about circuits for quantum computing [15].

In this respect, it is important to notice that when some of the nodes of the
network are taken to infinity, the corresponding links become open channels, and
in this case we can define a scattering matrix to relate incoming and scattered
plane waves (the asymptotic free-particle wave functions along the open chan-
nels). For instance, if j is a node of the graph connected to infinity, we have (see,
for example [16])

ψk
j (x) =

{
Sjk(q) exp(iqx)
exp(-iqx)+ Skk(q) exp(iqx) (j = k),

(21)

where all the nodes of the same type of j are labelled by k and where x varies
along the line connecting k to infinity with origin at the node. S is the unitary
scattering matrix. The notation in (21) establishes the direction of transmission.
In the study of quantum networks, one of the most attractive aims is the con-
struction of graphs which can realistically model physical systems, and determine
a scattering matrix, for a given choice of open channels, which corresponds to
one of the basic logical gates.

Turning back to a closed graph, it is possible to derive a set of equations
which involves the wavefunction evaluated at all node positions. We combine
equations (15), (18) and (19). From (15) we have at node j

�j = ϕij (lij ) = Fij (lij )�i +Gij (lij )ϕ
′
ij (0) (22)
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and then from (19)
ci∑
j=1

ϕ′
ij (0) = ζi�i = −�i

ci∑
j=1

Fij

Gij

+
ci∑
j=1

�j

Gij

, (23)

which defines a system of N equations, one at each vertex, and involving only
the wave function evaluated at the nodes. Equation (23) has been studied in
model lattices with one component in the unit cell, by putting ζi = 0, Fij = F

and Gij = G and evaluating F by solving the Schrödinger equation (14) for a
model potential [4,17]. In this situation we have

ciF�i =
ci∑
j=1

�j . (24)

In the more general case all possible Fij and Gij must be calculated by solv-
ing (14) along wires. It is interesting to look at the corresponding integral equa-
tions

Fij (lij ) = cos qlij + 2
∫ lij

0

sin
[
q(lij − t)

]
q

vij (t)Fij (t)dt, (25)

and

Gij (lij ) = sin qlij
q

+ 2
∫ lij

0

sin
[
q(lij − t)

]
q

vij (t)Gij (t)dt, (26)

where q = √
2ε. Through these equations one can attempt a perturbative

solution in cases in which free-electrons are weakly perturbed by a potential vij
along wires. It is also important to remark that Fij (lij ) = Fji(lij ) only if the
potential is symmetrical along the link i − j , the same holds for Gij . F and G

are also connected by the constancy of the Wronskian

W = F(λ)G′(λ)− F ′(λ)G(λ) = F(0)G′(0)− F ′(0)G(0) = 1 . (27)

In order to establish a bridge between the quantum network model here dis-
cussed and real electron systems, knowledge of both F and G functions is essen-
tial input. In the case of models satisfying equation (24) the unique value of F
is given by connectivity [4,18]. Defining the connectivity matrix by the elements
Hij = 1 for linked i and j and Hij = 0 otherwise, we can rearrange equation (24)
to obtain the secular equation

Mf = F f, (28)

where

Mij = Hij√
cicj

, fi = √
ci�i (29)
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and in which the “so-called” form factor F is the eigenvalue of the transformed
connectivity matrix M. In the case of an infinite periodic system equation (28)
is diagonalized by applying Bloch’s theorem to �i .

In different cases we must apply equation (23) without approximations. Let
us take for example the π orbitals of a butadiene molecule (see figure 2(c)). In
this case we can put ζi = 0 and from (23) we get the system of equations

Fs�1 = �2,(
Fs
Gs

+ Fl
Gl

)
�2 = 1

Gs
�1 + 1

Gl
�3,

(30)(
Fs
Gs

+ Fl
Gl

)
�3 = 1

Gl
�2 + 1

Gs
�4,

Fs�4 = �3

in which the subscript s indicates the short bonds (between carbons 1 and 2 and
between carbons 3 and 4) and l the long bond (between carbons 2 and 3). F
derived from (28) is always in the interval [–1,1] (allowed values), while in the
more general case as in (30) could be also >1 or <−1. The solution of (30)
requires the knowledge of both the F and G functions and consequently of the
potential along wires. Such a potential is normally unknown and in the develop-
ment of the quantum network model for applications to real systems its deriva-
tion is a crucial point. Inside wires the potential behaves as a barrier because the
overall potential shows clearly minima at the nuclear positions. For a symmetric
vij potential one can resort to a reliable approximation like

vij (λ) = vij (0)+ij sin2
(
πλ

lij

)
, (31)

where the constants vij (0) and ij may be determined, for example, by fitting ab
initio data obtained for a small molecule. As in a self consistent field approach,
both vij (0) and ij could, in principle, be dependent on the energy eigenvalue ε
of the Schrödinger equation (14).

By way of example, in figure 12 the computed ab initio molecular electro-
static potential is plotted along a broken line parallel to the carbon chain and
0.5 Å above, more or less inside the upper lobe of the π orbitals, calculated for
neutral and ionized butadiene. It is evident, from this Figure, that the barrier is
higher for the long C–C bond and that approximately the barrier height is not
very sensitive to the filling of π orbitals while instead the curves are shifted in
the three cases.

A further difficult aspect in connecting the model to real systems is the con-
finement of wires in perpendicular directions. In the present model we assume an
infinitely small thickness, while normally we have not this situation. Some discus-
sion on “fattened graphs” is given in [19].
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6. Summary and future directions

Following specific examples of graphene and then boron nitride layers, Sec-
tion 5 sets out a rather general compact formulation of the QNM. The model, as
we have demonstrated is sufficiently simple that energy-wave vector (E(k)) rela-
tions and the associated density of states can readily be obtained on a personal
computer.

In addition to the graphene sheet in Section 2, C nanotubes [20,21] can be
treated by “wrapping” the graphene sheet in various ways (see figure 13). The
QNM has been applied to the electronic structure of B nanotubes for various
wrappings in [18].

Also of interest is the possible generalization of the band gap calculation
presented for trans-polyacetylene in Section 4 to a wide class of potentially inter-
esting polymers for device physics. Among these are numbered polydiacetylene,
with a π sub-band gap near 1.7 eV [9], para-polyphenyl (PPP) 3 eV and polypyr-
role (PPY) with a gap of 3.1 eV. In PPP, the enhanced energy separation between
the π sub-bands arises from (a) the introduction of benzene rings and (b) the

Figure 12. Molecular electrostatic potential along a broken line 0.5 Å above the C1–C2–C3–C4

chain for C4H+
6 (lower curve), C4H6 and C4H−

6 (upper curve). Energies are in hartree and length
in Å.
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Figure 13. Shows a particular wrapping of a graphene layer into a C nanotube related to the type
discovered by Iijima [20]. Points A and A′, as points B and B′, are brougth to coincidence. The part
enclosed in the wrapped rectangle forms the unit cell of the nanotube. �T and �Ch are the translational

and the chiral vectors, respectively (see the book by Saito et al. [21] for a full discussion).

consequential effect of the departure of these from planarity. It is a question of
interest for the future as to whether the QNM can be adapted to deal with this
situation with more modest effort than full electronic band structure calculations.

Doping has been referred to in Section 4 and an application of the QNM
to treat various type of atomic defects in an otherwise perfect network has been
set out by Mills and Montroll [17].

Finally, and more ambitiously, disorder can be introduced into the QNM,
as treated initially by Dancz et al. [22], and later, and much more mathemati-
cally by Ringwood [23]. In this study, the simplest form of the QNM presented
here, namely the free-electron network model (with V = 0 along all wires) is
reformulated in terms of restricted random walks. Ringwood’s work is suitable
for the study of topologically disordered networks [24,25]. Whereas in the earlier
study of Dancz et al., the network model is used to study localization in disor-
dered systems, and due to the absence of Bloch’s theorem, since k the wave vec-
tor can no longer be used to characterise the energy states, statistical arguments
are invoked and a Boltzmann equation for the system is derived, Ringwood cal-
culates the Feynman propagator within his restricted random walk framework.
One consequence for the density of states of the graphene layer (see figure 6)
is that the spikiness (arising from the so-called Van Hove singularities [26]) is
smeared out by disorder. Also interesting questions arise as to whether the delo-
calized Bloch wave functions appropriate to perfect crystals become localised by
sufficient disorder in the QNM.

References

[1] K. Ruedenberg and C.W. Scherr, J. Chem. Phys. 21 (1953) 1565.
[2] C.A. Coulson, Proc. Phys. Soc. (Lond.) A 67 (1954) 608.
[3] C.A. Coulson, Proc. Phys. Soc. (Lond.) A 68 (1955) 1129.



112 C. Amovilli et al. / Electronic energy spectrun of two-dimensional solids

[4] E.W. Montroll, J. Math. Phys. 11 (1970) 635.
[5] L. Pauling, J. Chem. Phys. 4 (1936) 673.
[6] H. Kuhn, J. Chem. Phys. 16 (1948) 840.
[7] J.R. Platt, J. Chem. Phys. 17 (1949) 484.
[8] R. McWeeny, Quantum Mechanics: Methods and Basic Applications (Pergamon Press, Oxford,

1973).
[9] N.C. Greenham and R.H. Friend, Solid State Phys. 49 (1995) 1.

[10] C.K. Chiang, C.R. Fincher Jr., Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau and
A.G. MacDiarmid, Phys. Rev. Lett. 39 (1977) 1098.

[11] J.E. Lennard-Jones, Proc. R. Soc. Lond. A 158 (1937) 280.
[12] H.C. Longuet-Higgins and L. Salem, Proc. R. Soc. Lond. A 251 (1959) 172.
[13] M.S. Dresselhaus and G. Dresselhaus, Adv. Phys. 30 (1981) 139.
[14] V. Kostrykin and R. Schrader, J. Phys. A: Math. Gen. 32 (1999) 595.
[15] V. Kostrykin and R. Schrader, Fortschr. Phys. 48 (2000) 703.
[16] P. Kurasov and F. Stenberg, J. Phys. A: Math. Gen. 35 (2002) 101.
[17] R.G.J. Mills and E.W. Montroll, J. Math. Phys. 11 (1970) 2525.
[18] F.E. Leys, C. Amovilli and N.H. March, J. Chem. Inf. Comput. Sci. 44 (2004) 122. (released

on the web)
[19] P. Kuchment, Wave Random Media 12 (2002) R1.
[20] S. Iijima, Nature 354 (1991) 56.
[21] R. Saito, G. Dresselhaus and M.S. Dresselhaus, Physical Properties of Carbon Nanotubes

(Imperial College Press, London, 1998).
[22] J. Dancz, S.F. Edwards and N.H. March, J. Phys. C 6 (1973) 873.
[23] G.A. Ringwood, J. Math. Phys. 22 (1981) 96.
[24] P.G. Doyle and J.L. Snell, Random Walks and Electric Networks (Mathematical Association of

America, Washington DC, 1984).
[25] A.H. Zemanian, IEEE Trans. Circuits Syst. 35 (1988) 1346.
[26] J.M. Ziman, Principles of the Theory of Solids (University Press, Cambridge, 1979).


